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Computer simulations of fluid-element trajectories in mirror-symmetric and 
maximally helical turbulence are used to evaluate Moffatt's (1974) formulae for 
the magnetic diffusivity ~ ( t )  and the coefficient a(t) of the alpha-effect. The 
passive-scalar diffusivity ~ ( t )  and the mean response functions of scalar and 
magnetic field wave-vector modes are also computed. The velocity field is 
normal, stationary, homogeneous and isotropic with spectrum E(k)  = $vZ, 6(k - k,) 
and time correlation exp [ -&g(t - t ' )z] .  The cases w, = 0 (frozen turbulence), 
w, = vo k, and wo = 2v, k, are followed to t = 4/v, k,. In  the wo > 0 cases with 
maximal helicity, ~ ( t )  and a(t) approach steady-state values of order vo/k0 and 
v,, respectively. They behave anomalously for w, = 0. In  the mirror-symmetric: 
cases, q(t) and ~ ( t )  differ very little from each other. At all the w, values, ~ ( t )  
is bigger in the helical than in the mirror-symmetric case. The difference is 
marked for w, = 0. The simulation results imply that ~ ( t )  becomes negative in 
non-normal mirror-symmetric turbulence with strong helicity fluctuations that 
persist over several correlation lengths and times. The computations of response 
functions indicate that asymptotic expressions for these functions, valid for 
k < k,, retain good accuracy for k w k,. The mean-square magnetic field is found 
to grow exponentially, and its kurtosis also grows rapidly with t ,  indicating rapid 
development of a highly intermittent distribution of magnetic field. 

1, Introduction 
Moffatt (1974) has given exact Lagrangian expressions for the coefficient of 

the a-effect and for the diffusivity experienced by a slowly varying weak magnetic 
field in n perfectly conducting fluid which is in statistically homogeneous tur- 
bulent motion. These expressions, and related formulae for the mean response 
functions of Fourier modes of the magnetic field, are suited for direct computer 
simulation. They are thereby a tool for resolving some questions about the 
behaviour of the magnetic field which have not been convincingly settled by 
approximate theory. 

The present paper reports computer simulations for several examples of 
helical and reflexion-invariant homogeneous, isotropic, random velocity fields. 
The technique used is an extension of one previously exploited for the com- 
putation of passive-scalar diffusivities (Kraichnan 1970). A large number of 
fluid-element trajectories are explicitly constructed and the desired diffusivities 
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and other quantities are computed as averages over the distribution of trajec- 
tories. In  the case of the magnetic field, it  is necessary to follow the strain as well 
as the displacement of the fluid elements. We do this by tracing the history of 
closely spaced pairs of fluid elements. 

In  addition to determining the behaviour of the a-effect coefficient a(t) and 
the magnetic diffusivity ~ ( t )  for normally distributed turbulence both with 
mirror symmetry and with maximal helicity, a principal purpose of the present 
paper is to test a recent prediction (Kraichnan 1976) that large-scale fluctuations 
of helicity in non-normal mirror-symmetric flows yield negative values of ~ ( t )  
for sufficiently long times t .  We also find the mean response functions of the 
magnetic field a t  wavenumbers comparable to those of the velocity field. Finally, 
we give measures of the intermittency of the magnetic-field fluctuations induced 
by the turbulence. 

2. The basic Lagrangian formulae 
A weak magnetic field in a perfectly conducting incompressible fluid obeys 

aBi/at = a(ui Bj - ~j Bi)/axj, (2.1) 

with V.B = V . U  = 0. (2.2) 

Here B and u are the total magnetic field and total velocity field, respectively. 
The general solution of (2.1) can be written as 

Bi(X(a, t ) ,  t )  = Bj(a, 0 )  aXi/aaj, (2.3) 

where X(a, t )  is the position at time t of the fluid element located at a when t = 0. 
If u is a turbulent velocity field, and the initial magnetic field is statistically 

independent of the velocity field, then the ensemble-averaged magnetic field 
obeys a differential equation which, in the homogeneous isotropic case, has the 

(2.4) 
form 

The higher terms in (2.4) involve spatial derivatives of (B(x, t ) )  of higher than 
second order and are negligible if the time and space scales of variation of 
(B(x, t ) )  are large compared with any correlation scale of the turbulence. The 
coefficients a(t) and ~ ( t )  can be directly found from (2.3) by making a spatial 
Taylor expansion of the initial mean magnetic field (Moffatt 1974). They can 
be written compactly in the form (Kraichnan 1976) 

~ (B(x ,  t))/at = - a(t) V x (B(x, t ) )  + T ( t )  V2(B(x, t ) )  + . . . . 

a(t)  = W)/& T ( t )  = dC(t)/dt + B4r(t112/& (2.5) 

where y( t )  = Q(%j t n w  axi(t)/aaj), (2.6) 

a t )  = &[2(Ci(t) EAt) axn(t)/a%) - (Ei[i(t) E7At) axi(~)/a%Jl. (2.7) 

I n  these equations, &(a, t )  = X,(a, t )  - ai and the argument a is implicit. 
The quantities a(t), ~ ( t ) ,  y( t )  and [ ( t )  can be written in a variety of ways by 

using isotropy properties and the homogeneity property that the derivative of 
any average with respect to a vanishes. Thus it can be found that 

[ ( t )  = Q(1512(1+Sa&/aai))* (2.8) 
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?(t) = &((53 a52/aa1) - ( 5 2  ac3/aa1)), 

a ( t )  = ((v3 a c Z / a a l )  - v2 aE3/aa1)>, 

a t )  = *((ti + $3 axllaal), 

dC(t)/dt = H ( 5 2  v2 + l3v3) ax,/aa1> + a((5; + 42) a"l/a'xl). 
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The expressions which we shall actually use for computation in this paper are 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Here vi(a, t )  = &(a, t) /dt is the Lagrangian velocity and vl, v2 and v3 are com- 
ponents along the axes of a right-handed Cartesian system. 

The corresponding relations for a passively advected scalar field are 

a#/at + ui a+/axi = 0, 

#(X(a, t ) ,  t )  = #(a, O),  

a(#(x, t ) ) /at  = K ( t )  VZ(#(X, t ) ) ,  

(2.13) 

(2.14) 

(2.15) 

K ( t )  = dE(t)/dt, E ( t )  = $(&(t) &(t)).  (2.16) 

Isotropy and homogeneity imply that the mean response tensor for a wave- 
vector mode of the magnetic field has the form 

gii(k,t) = P , j ( k ) g ( k , t ) + i k ~ ~ ~ i , i h ( k , t ) ,  g ( k , O )  = 1, h(k,O) = 0, (2.17) 

where P,j(k) = 8ij - ki kj/k2. 

To evaluate g(k,t) and h(k,t), we may assume a large cyclic box of volume V 

Bi(x, 0) = [exp ( ik .x ) ,  O,O], (2.18) and take 

where k lies in the 2,3  plane. Then, by (2.17) and the definition of a response 

g(k, t )  = V-l/<B,(x, t ) )  exp ( - i k .  x )  d3x, 

h(k,  t )  = ik-1V-1J(B3(x, t ) )  exp ( - i k .  x )  d3x 

tensor, 

[ k  = (0, k ,  O)]. 

From (2.3) we have 

(Bi(x,  t ) )  = exp ( ik  . x)( ( aX,/aal) exp ( - ik  . g))x=x. (2.20) 

The notation ( )x=x in (2.20) means that the average is over that trajectory, 
in each realization, which passes through the given point x a t  time t. By homo- 
geneity, the average in (2.20) is independent of X .  A further consequence of 
homogeneity is that the average is independent of whether the point x is kept 
fixed, as written, or the initial point a is kept fixed. From (2.19) and (2.20), 

g ( k ,  t )  = ((axl/aal) exp ( - ik .g) ) ,  

h(k, t )  = iL-l((aX3/aa,) exp ( - i k .  5)). (2.21) 

Additional reduction results from further use of isotropy properties. In  the 
expression (2.21) for g(k, t ) ,  the result must be independent of the direction of k 
in the 2,3 plane. Averaging over this direction, we have 

g(k,  t )  = ((axl/aal) JON<; + E3fI). (2.22) 
48-2 
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For h(k, t ) ,  we take k along the x2 axis but symmetrize the final expression by 
exchanging the roles of x2 and x, in (2.19) et seq. The result is 

h(k, t )  = @-l((aX,/au,) sin (k.5,) - (aX,/aa,) sin (k.5,)). (2.23) 

The sines appear in (2.23) because isotropy implies that the even terms in the 
expansion of the exponential in the expression (2.21) for h(k, t )  do not contribute. 

The corresponding expressions for the response function g,(k, t )  of the passive- 
scalar field are 

S,@¶ t )  = (exp ( -  ik .El), g,(k, t )  = {sin (k.5)/(kt)) .  (2.241, (2.25) 

In  (2.24), k has any direction in three dimensions, and (2.25) results from an 
average over this direction. 

The isotropic formulae (2.22)-(2.24) are exact. They do not restrict k to values 
small compared with the wavenumbers of the turbulence. If k is small compared 
with any wavenumbers of the turbulence, alternative expressions for the 
response functions are obtained by integrating (2.4) and (2.15): 

(k < k,), g(k, $1 w exp 1- w 5 +  b 2 ) 1  cash (ky) 
h(k, t )  E - exp [ - k2(5+ 4ya)] sinh ( I c y )  

(2.26) 

(2.27) 

g,(k, t )  w exp ( -  k2Z)  (k < k,,), (2.28) 

where k, denotes a characteristic wavenumber of the turbulence. If now (2.22), 
(2.23) and (2.25) are expanded in powers of k the results must be equivalent to 
theexpansionsof (2.26)-(2.28), termbyterm. This implies certain relations among 
Lagrangian moments, of the displacement and strain fields, for times long 
compared with turbulence correlation times. We shall discuss them in a later 
section of the paper. 

(k < k,,), 

3. Method of simulation 
We compute the Lagrangian formulae of Q 2 by a modification of the method 

used previously for scalar diffusion (Kraichnan 1970). We seek to realize velocity 
fields whose covariance has the form 

dk, 
00 sin (kr )  (u(x + r, t )  . u(x, t ’ ) )  = 2D(t - t ’ )  

and which display isotropic, homogeneous, normal statistics. The time correla- 
tion function is taken to be of the form 

D(t - t ’ )  = exp [ - $wf(t -  t ’ )2 ] ,  (3.2) 

and the spectrum function is taken to be of either of the two forms 

E,(k) = #viS(k-k,) ,  E,(k) = 16(2/~))wfkflk;~exp ( -2k2/ki). (3.3) 

Here vo is the root-mean-square velocity in any direction and the spectra peak 
is a t  k,. 

The velocity field is stored as a collection of Fourier amplitudes and synthe- 
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sized in x space only along the particle trajectories. In  the case of mirror- 
symmetric turbulence, each realization is taken to be of the form 

N 

n = l  
u(x,~) = [(b,xk,)cos(k,.x+w,t) 

+ (c, x k,) sin (k,. x + w, t ) ] ,  (3.4) 

which automatically gives incompressibility. The vectors b, and C, are chosen 
independently from a, three-dimensional Gaussian distribution whose variance 
is chosen to yield the desired vo. In  accord with (3.2), the on are chosen from a 
Gaussian distribution with standard deviation wo. The vectors k, are picked 
from an isotropic distribution such that the desired E(k)  would be realized in 
the limit N+w. For El, this means that k, is isotropically distributed on a 
sphere of radius k,. For E,, each component of k, is picked from a Gaussian 
distribution of standard deviation $k0. By the central-limit theorem, the 
moments of u(x, t )  approach normal values as N +a. All the parameters in (3.4) 
are chosen afresh for each realization. 

To realize a normal, maximally helical distribution, the only change is that 
the coefficient c, x k, in (3.4) is replaced by f k;l(k, x b, x k,), where the sign, 
which determines the sign of the helicity, is kept the same for all the realizations. 

The particle trajectories are found by integrating 

dX(t)/dt = v(t), v(t) = u ( X , t ) .  (3.5) 

In  each realization two particles are followed. One starts at X(0)  = 0 and the 
other a t  X(0) = (Aa, 0,O). All the simulations reported here have 

Aa = 10-'%tl. (3.6) 

The strain vector aX(t)/aa, which appears in the formulae of $ 2  is evaluated 
as AX(t)/Aa and the displacement vector g(t) is evaluated as the mean of the 
displacements of the two particles. The averages in the formulae of $ 2  are 
evaluated as averages over R independent realizations. The runs reported here 
all have N = 20, R = 20000. (3-7) 

Experiments were made to verify that increasing N did not change the results 
to within the statistical errors. Equation (3.5) is integrated by a fourth-order 
stable predictor-corrector method due to Hamming (Ralston & Wilf 1960). The 
starting values are formed by a second-order predictor-corrector scheme and 
four iterations of Newton's interpolation formulae for the first three time steps. 
For the runs reported here, 

At = 0.125(~ ,k~)- l .  (3.8) 

It was verified by decreasing At that errors due to the finite time step were 
negligible compared with statistical errors, 

The Gaussian distributions needed are formed by the log-cosine method 
(Abramowitz & Stegun 1965) starting with pseudo-random uniformly distributed 
numbers generated by the RANF congruential routine a t  the National Center 
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for Atmospheric Research Computing Facility.? To avoid possible spurious 
correlation effects, the numbers used are chosen by pseudo-random addressing 
from a table of 1000 pseudo-random numbers. Each number used from the 
table is replaced by a new pseudo-random number. 

As we shall discuss later, the distribution of aX/aul becomes highly non- 
normal during the simulations. In  order to estimate in a simple way the errors 
in the calculated means, we therefore group each run of 20 000 realizations into 
40 sets of 500 realizations each. The grand average { z )  of any quantity z is then 

(3.9) 
s=1 

where the Z, are the means over the individual sets of 500. By a central-limit 
argument, the Z8 should be approximately normal even though z itself is not. 
We therefore compute a probable error of the grand average in standard fashion 
as 40 

Sz = 0.6745[&[& s=1 (2s)2 - { z ) ~ ] ) ' .  (3.10) 

4. Results 
Simulations were carried out up to t = 4/d,k, and included runs with each 

of the two choices of spectrum, with helical and mirror-symmetric velocity fields, 
and with three values of 0,: wo = 0 (frozen turbulence), w, = v, k, and w, = 2w, k,. 
Results with the spectra El and E, were similar. The El runs showed somewhat 
smaller probable errors, however, and it is only these which we present here. 

Figure 1 shows a(t)  for the maximally helical normal velocity field with 
w, = 0, w, = vok, and w, = 2v,ko, as computed from (2.10). Figure 2 shows the 
correspondinP values of ~ ( t )  and K ( t )  as computed from (2.16), (2.5) and (2.12), 
using 

with r(t) computed as the Simpson-rule integral of a(t). In  these figures, and 
those to follow, the error bars show probable errors computed by (3.10).$ For 
the two non-zero values of a,, the plots indicate that both a(t)  and ~ ( t )  settle 
down to steady-state values after an overshoot which is about 25 % for w, = vok, 
and barely perceptible for w, = Zv, k,. The probable errors increase rapidly with 
t ,  largely, as we shall indicate later, because of increasing interniittency of the 
strain distribution. The wiggles in the curves beyond t = 3/v, k, are due to finite 
sample size. Similar wiggles appeared, but less rapidly, in the previous work on 
pure scalar diffusion (Kraichnan 1970). 

In  the case of the frozen velocity field, both a(t)  and ~ ( t )  show anomalous 
behaviour. It is not possible to judge from the plots whether a(t)  and ~ ( t )  oscillate, 
go off to negative infinity or show some other behaviour. It is not economically 

7 This routine computes successive random integers Ni according to 

N,,, = ( 224 - 3) Ni (modulo 248). 

We start the routine by taking No as a ten-digit random odd integer. 
$ The bars for ~ ( t )  and E( t )  are too small to be visible on the plots. 
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FIGITRE 1. The function a(t) for maximally helical normal turbulence. 

2 

d 
E l  

cu" 

\ - 
u 

2 -  

d 
E 1 -  

cu" 

\ - 
u 

h 

0 

P 

3 0  

u v 

c 

- 

-- 1 - 
FIGURE 2. The functions ~ ( t )  and ~ ( t )  for maximally helical normal turbulence. (1) ~ ( t )  
for@,= 0 , ( 2 ) ~ ( t ) f o r w ~  = O,(3)q(t)foro0 =woko,(4)~(t)forwO= v o k o , ( 5 ) ~ ( t ) f o r ~ 0 =  2w0k0, 
(6) K ( t )  for wo = 2v0 k,. 
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FIUTJRE 3. The functions ~ ( t )  and ~ ' ( t )  for several cases. (1) ~ ( t )  for the mirror-symmetric 
wo = 0 case, (2) ~ ' ( 1 )  for the mirror-symmetric w, = 0 case, (3) ~ ( t )  for the maximally helical 
wo = 0 case, (4) ~ ' ( t )  for the maximally helical w, = 0 case, ( 5 )  ~ ' ( t )  for the maximally helical 
w0 = vo k, case. 

J. 

-- 1 

FIUTJRE 4. The functions E(t)  and [ ( t )  for several cases. (1) &(t) for the mirror-symmetric 
w, = 0 case, (2) { ( t )  for the mirror-symmetric w, = 0 case, (3) X ( t )  for the maximally helical 
wo = 0 case, (4) [ ( t )  for the maximally helical w, = 0 cam, (6)  <(t) for the maximally helical 
wo = vo k, case. 
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feasible to extend the calculations substantially further in t because the rapid 
increase in statistical fluctuation with t would require enormous samples. 

Figures 3 and 4 compare ~ ( t ) ,  f ( t )  = dC(t)/dt, C(t) and E(t) for several of the 
runs. We note first that the passive-scalar functions ~ ( t )  and Z(t )  are both 
substantially different in the helical and mirror-symmetric frozen-field cases 
respectively. Helical turbulence appears clearly to be the better diffuser. The 
diffusivity in the helical case is nearly twice the mirror-symmetric value at 
t = 4/v, k,, and is still rising. The corresponding curves of diffusivity for w, = vo k, 
(not shown here) both level off by t = 3/v,k,, with the asymptotic value in the 
helical case about 40 yo higher than in the mirror-symmetric case. 

In the mirror-symmetric case, q'(t) = ~ ( t ) ,  and the plot shows remarkably 
little difference between ~ ( t )  and ~ ( t ) .  The difference, in fact, is not clearly 
statistically significant. The curves shown are for the frozen case, in which 
differences should be most pronounced. The plots for the frozen case serve also 
to determine r(t) and K(t) for a velocity distribution which is piecewise constant 
in time, over intervals of duration Z T ~ ,  and statistically independent for distinct 
intervals, thereby giving a velocity correlation time T~ (Kraichnan 1976). If the 
breaks between intervals are a t  random times in the different realizations, then 
it is easy to show that 

/ r t  

where tho left-hand side is the value for the piecewise-constant case and q(t)  on 
the right-hand side is evaluated for the frozen case. Corresponding relations hold 
for ~ ' ( t )  and ~ ( t ) .  Equation (4.2) follows from the fact that for a given placement 
of the interval breaks q(t) rises from zero at t = 0, drops abruptly back to zero 
at the first (randomly placed) break between intervals and is thereafter periodic 
with period 2r1, while reproducing, in each of its rises from zero, the rise of the 
frozen-field q(t)  from t = 0. It is clear from (4.2) and the plots that the difference 
between q(t) and ~ ( t )  in the piecewise-constant mirror-symmetric case is com- 
pletely negligible for T~ < 1.5/v0 k,. 

In  contrast, figures 2 and 3 show marked differences among q(t), f ( t )  and 
~ ( t )  for the maximally helical velocity field, both for w, = 0 and w, = v, k,. The 
differences are associated with the strong correlation between strain and displace- 
ment displayed for the helical case in figure 4. The displacement components 
& should be nearly normally distributed, and measurements of kurtosis in the 
present simulations confirm this (see also Kraichnan 1970). Also, i t  follows from 
symmetry that (i3Xl/i3al) = 1. Thus the bending over of the helical c(t) curves 
into negative values indicates a strong and persistent correlation between strain 
and displacement, and this shows up in figure 3 as negative values of f ( t ) .  Pigures 
1 and 2 suggest that a(t) andr(t) level off at non-zero, positive steady-state values 
if w, > 0. Equation (2.5) then implies that q'(t) should display a negative value 
which increases in magnitude linearly with t if the plots could be extended to 
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210 bo t 

FIGURE 5. Growth of magnetic-field intensity. (1) Mirror-symmetric case with w0 = 0, 
(2) maximally helical case with oo = 0, (3) maximally helical case with wo = w0 ko. 

large t .  It is interesting that the curves for ~ ' ( t )  in the helical case show much less 
contrast between wo = 0 and wo > 0 than do the curves for q(t). 

Suppose the initial magnetic field is uniform and has the form 

B(x, 0) = (Bo, 0,O). (4.3) 

Then (2.3) gives B,(X, t )  = Bo aXi/aal, (4.4) 

( 1x3 I "Pi = ( I  ax/aa, I 9, (4.5) 

(4.6) 

so that the statistics of B(X, t) are just those of aX/aa,. In  particular, 

(1 B I ">I( IB I 2)2 = (1 ax/% I axla% I 2>2* 

Figures 5 and 6 show the growth of (IBl2) and (1Bl4)/(1B]2)2 as given by (4.5) 
and (4.6) for the helical and mirror-symmetric frozen cases and the helical 
wo = voko case. It is anticipated theoretically that the strain should show 
asymptotically exponential growth and that it should become approximately 
lognormal, thereby displaying ever-increasing intermittency (Batchelor 1969; 
Cocke 1969; Kraichnan 1974). The plots confirm this expectation. Note that 
(lB14)/(1B12)2 is unity a t  t = 0 while its value for a normal distribution in three 
dimensions, with mean negligible compared with fluctuations, is 9. 

Figure 7 shows values of g(k, t )  and g,(k, t )  for the helical case with wo = 2v0 ko 
as computed from (2.22) and (2.25). For k = 0, the plotted functions 

- k-2 In [g(k, t ) ] ,  - k21n  [g,(k, t ) ]  

reduce simply to [ ( t )  and E( t )  respectively. The deviations of the curves for 
non-zero k from those for zero k in the scalar case are a measure of the deviation 
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0 0  k ,  t 
FIUURE 6. Growth of kurtosis of magnetic-field distribution. (i) Mirror-symmetric case 
with W, = 0, (2) maximally helical case with W, = 0, (3) maximally helical case with 
00 = v0 k,. The horizontal line is at the normal value In $. 

h 
h u 

I 

?-I 
0 

I 
0 

0 0  ko t 
FIUURE 7. The functions g(k ,  t )  and g,(k, t )  for the maximally heIical case with w,, = 20, k,. 
(1) g,(k, t )  at k = 0,  (2) gJk, t )  at k = k,,, (3) g(k, t )  at k = 0, (4) g(k, t )  a t  k = Vo. ( 5 )  g(k, t )  
at k = k,, (6) the asymptotic expression (2.26) a t  k = k,. 

of the 
were taken along, say, the x1 axis we should have, noting symmetry, 

distribution from normality. To see this, we note that if k in (2.24) 

(4.7) g , ( k  t )  = (cos WtJ) 
instead of (2.25). If 5, is normal we obtain precisely (2.28) if we take account of 



764 R. H .  Kraichnan 

isotropy. In  the case of g(k, t), interpretation is not so simple. It is of interest to 
ask for how large a value of k/k, the asymptotic small4 form (2.26) is accurate. 
A plot of (2.26) for k = k, is includedin figure 7, andits deviation from the actual 
g(k, t )  is barely statistically significant. Thus (2.26) seems a good approximation 
for k Q k,. We did not compute h(k, t ) .  

5. The alpha-squared effect 
Although the present calculations are for normal distributions, they serve to 

test the prediction (Kraichnan 1976) that persistent and extensive helicity 
fluctuations in mirror-symmetric non-normal turbulence lead to negative values 
of ~ ( t )  (the &effect). Consider the following special case of such turbulence. 
The typical realizations consist of regions large compared with l/k, in each of 
which the velocity field is locally homogeneous and isotropic, with maximal 
helicity. The sign of the helicity changes a t  random from one region to the next. 
The transition zones between regions are of thickness - l/ko. Since an ensemble 
of such realizations has mirror symmetry, a($) vanishes for the ensemble. Hence 

(5.1) 
the formulae of $ 2  give 

r(t)  = = dC(W-4 

where <(t) is given, as before, by (2.7). 
Now let t be small enough that most fluid elements have wandered less than 

the distance to the nearest boundary between regions. Then most elements will 
experience displacement and strain corresponding to normal, homogeneous, 
maximally helical turbulence. But g ( t ) ,  given by (2.7), is invariant to a change 
of sign of helicity since it is invariant to a mirror-reflexion of the co-ordinate 
system. It follows that, for such t ,  simulation values of C( t )  in the normal maxi- 
mally helical cases apply also to the non-normal mirror-symmetric ensemble. 
The root-mean-square displacement of a fluid element is (6E)). Hence the 
required size of the regions in the mirror-symmetric ensemble for the corres- 
pondence to hold can be estimated, for a given t ,  from figure 4. For wo = 0, 
(65))  N 6/k, a t  t = 4/v, k, and ( 6 s ) )  - 3/k ,  a t  t = 2/v, k,. The latter time is when 
dg(t)/dt first becomes negative. For w, = voko, the corresponding values (not 
plotted) are - 5/k0 and N 3/k,. 

The characteristic correlation length for the spectrum El can be taken as 

(3v3-l IOm(u(x + r) . u(x)) dr = 7r/2 k,. 

Hence we conclude that the homogeneous results arevalid for the present mirror- 
symmetric ensemble up to t = 4/v, k, provided the locally homogeneous regions 
in the latter are substantially larger than four correlation lengths. Substantial 
anomalies in the magnetic diffusivity should appear if the regions are larger 
than two correlation lengths. 

Our results in the maximally helical homogeneous cases w, = v,k, and 
wo = 2v0k, indicate that both a(t) and ~ ( t )  in these cases approach non-zero 
asymptotic values a t  large t .  Then (2.5) implies that dC(t)/dt is negative a t  large 
t with a magnitude that grows linearly with t .  Thus, if the regions are large 
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enough, as large a negative value of ~ ( t )  as desired can be realized in the locally 
homogeneous mirror-symmetric ensemble. 

So far we have assumed that the sign of the helicity in a given region persists 
forever. We can generalize the locally homogeneous ensemble by introducing a 
helicity correlation time T~ which is realized as follows. The ensemble as described 
above persists over intervals of duration 2r2 during which the region boundaries 
and the signs of helicity in the regions are constant. But on distinct intervals 
the locations of the regions and the signs of helicity are statistically independent. 
Moreover, the transition times between the intervals are randomly staggered in 
different realizations. With this change, the homogeneous, maximally helical 
values of ~ ’ ( t )  = dC(t)/dt from the simulation runs are related to the locally 
homogeneous mirror-symmetric values of ~ ( t )  by 

in analogy with (4.2). This relation holds, both for zero and for non-zero w,, 
provided the locally homogeneous regions are larger than the migration distance 
of most fluid elements in the time 2 ~ ~ .  By making the regions large enough with, 
say, w, = vOko, we can realize as large a negative steady-state value of q(t) as 
desired in the locally homogeneous ensemble. 

6. Discussion 
Our principal results are that, first, in maximally helical, isotropic, homo- 

geneous, normal turbulence with w, ,., vOkO, the magnetic diffusivity ~ ( t )  and 
alpha-effect coefficient a(t) tend to non-zero, finite steady-state values. Second, 
in mirror-symmetric, homogeneous, isotropic turbulence with, again, a correla- 
tion time ,., l/v, k,, y ( t )  differs from the passive-scalar diffusivity ~ ( t )  by a negli- 
gible amount for all t .  These results follow either directly from the simulations for 
non-zero w, or from the frozen (w, = 0) simulations together with (4.2), which 
relates frozen-field results to piecewise-constant results. A corollary of the first 
principal result is that the a2-effect, the development of negative q( t )  in mirror- 
symmetric turbulence with persistent helicity fluctuations, occurs for w, ,., vo k,. 

These results extend to more realistic correlation times the predictions of 
quasi-linear theory, which are valid for w, B v,k, (Steenbeck & Krause 1969; 
Roberts 1971; Kraichnan 1976). That approximation gives ~ ( t )  = ~ ( t )  in normal 
turbulence and yields values which are identical for the helical and mirror- 
symmetric cases. With the time correlation (3.2) the asymptotic steady-state 
quasi-linear values for maximal helicity are 

T(a3) = K(CO) = (+)4W~/W, = a(oo)/k,. (6.1) 

Thus no steady state is reached for w, = 0. For w, = vo k,, the quasi-linear value 
exceeds tlhe steady-state values suggested by the simulations by N 40 % for the 
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mirror-symmetric K(CO), by - 10 yo for the maximally helical ~(co), by > 50 % 
for the maximally helical ~ ( c o )  and by > 100 % for the maximally helical ~ ( c o ) .  
At wo = 2v0 k,, these overestimates are reduced to excess of - 5 yo for ~ ( m )  and 
~ ( c o ) ,  which are nearly the same in the maximally helical and mirror-symmetric 
cases and nearly equal to each other, and - 20 % for the maximally helical tc(00). 

The d irect-interaction approximation for the normal mirror-symmetric case 
gives identical values for ~ ( t )  and q(t). Also, it gives the same value for ~ ( t )  in 
both the mirror-symmetric and the maximally helical case (Roberts 1975; 
Kraichnan 1976). In  contrast to the quasi-linear approximation, it gives remark- 
ably accurate values for mirror-symmetric ~ ( t )  both for wo = 0 and w, - vo k,, 
and at all t .  Its  error for q(t)  in the mirror-symmetric cases and for ~ ( t )  in the 
maximally helical cases then reduces to the differences between the true values 
of these functions and those of the mirror-symmetric ~ ( t ) .  The direct-interaction 
equations for magnetic Green’s functions and q(t)  in the maximally helical case 
and for a(t)  (Lerche 1973) have not been integrated numerically. However, we 
expect that they do not give identical values for q( t )  and ~ ( t ) ,  in contrast to the 
quasi-linear approximation. The reason is t.hat these equations give a coupling 
between g(k, t )  and h(k, t ) ,  with the result that the equation for g ( k ,  t )  is not the 
same as the direct-interaction equation for g, (k , t ) .  This is a most interesting 
situation because the direct-interaction approximation uses the coefficients in 
the perturbation expansions of g(k, t )  and g,(k, t )  only up to terms in t2, and the 
two functions are identical to this order. 

An unanticipated result of the simulations is the large difference exhibited 
between values of ~ ( t )  for the mirror-symmetric and maximally helical cases. 
It is not even certain from the curves presented that ~ ( t )  approaches a steady- 
state value a t  large t in the frozen, maximally helical case, although it clearly 
does in the frozen, mirror-symmetric case (Kraichnan 1970). In  the latter case, 
the displacement 5 was found to stay close to a normal distribution, as measured 
by kurtosis, out to t = 15/v,k,, with a dip of about 12 % below the normal value 
of kurtosis in the neighbourhood of t  = 3/v, k,. In  the present maximally helical 
simulation, the kurtosis is 20 yo below the normal value a t  t = 4/w, k, and is still 
slowly falling. The physical reasons for this behaviour, and for the possibly 
associated anomalies in a(t) and q(t)  in the frozen, maximally helical case, need 
to be elucidated by further theoretical and numerical work. We should note 
that in all the simulations reported here the velocity field along the trajectories 
shows a kurtosis within 1 Yo of the normal value a t  all t .  This is the order of 
deviation expected on the basis of the sample size of 20 000. 

We noted earlier that when k < k, the coefficients of an expansion in powers 
of k of the response-function formulae (2.22), (2.23) and (2.25) must agree with 
the coefficients of the expansions of the asymptotic formulae (2.26)-(2.28), 
provided t is large enough that the higher terms in the expansions are not 
negligibly small. This means that t must be large enough that the response 
functions differ appreciably from their values at t = 0, thus that t 

In  the case of g,(k, t )  this implies that 5 is normally distributed for such t ,  a 
fact that is most easily seen by comparing (2.28) with the alternative form (4.7) 
instead of (2.25). The normality of 5 for large t is a central-limit behaviour 

l/v, k,. 
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associated with the fact that 5 is then a sum of many contributions: 

where each 5, comes from an independent eddy if w, 5 v, k, or from an inde- 
pendent correlation interval if w, 

In  the case of g(k,  t ) ,  it  is convenient to use instead of (2.22) the isotropically 
equivalent form 

Suppose there is mirror-symmetry so that y ( t )  vanishes. The equivalence of (2.26) 
and (6.3) at order k2 gives the identity [(t)  = C(t). At order k4, withisotropy taken 
into account, it gives 

which may be compared with the corresponding normalityrelation 

vo k,. 

(6.3) g(k, t )  = (axl/aal) COB (k'52)' 

((ax$%) 6 3  = 3((aXl/aal) 632,  (6.4) 

('53 = 3('m2 (6.5) 

which arises at order k4 from the equality of the two expressions for g,(k, t) .  
The strain aXl/aal a t  large t is the resultant of independent stretchings or 

shrinkings in each eddy or independent time interval. Consequently (cf. Cocke 
1969; Kraichnan 1974) it  has the form 

where the w, are independent. Now let s range over a large number N of similar 
eddies and let 

Homogeneity requires ,i? = 1 and isotropy requires 8 = 0. Following a procedure 
like the standard one for demonstrating (6.5) from (6.2) as N-+co, we have 

(6.7) a = (WS(t2)2)9 P = (WJ, 8 = (w,(Ez)s)* 

((aXl/aal) 6;) = NpN-l~t, ((axl/aal) 6;) = 3N2pN-2a2, (6.8) 

both with fractional error of order I /N.  Thus, noting /3 = 1, we get (6.4) as 
N +  00. Similar manipulations verify the higher relations obtained by comparing 
(6.3) and (2.26). 

If P = I and w, fluctuates, then (wz) > 1. Thus (6.6) gives 

((axllaal)2) = (W3N, (6.9) 

where the right-hand side grows exponentially with N .  In  contrast to this 
exponential growth, (6.8) shows that ((aXl/8al) W) grows only linearly with N .  
The physical reason behind this is that the fluid elements suffer many random 
rotations during their migration. In  effect, memory of initial orientation decays 
exponentially at the same time as the magnitude of the strain increases expo- 
nentially. The net result is the slow, linear growth of C(t ) ,  with equal contribu- 
tions, on the average, from each eddy traversed. 

The asymptotic lognormality of aXl/8al implies increasing intermittency of 
the B distribution, as we have discussed in connexion with figures 5 and 6. At 
the same time (lB12) grows exponentially. This means that great care must 
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be exercised in applying the weak-magnetic-field equations to physical problems. 
The fluctuating Lorentz forces can rapidly become strong locally even when the 
mean value (/BIZ) indicates weak Lorentz forces. Both the cascade of magnetic 
field fluctuations to smaller scales and the Ohmic dissipation will play crucial 
roles in determining the magnitude and distribution of the Lorentz forces in a 
physical application. 
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